Multistate DNA oligonucleotide dissociation revealed through FTIR, 2D IR, and t-HDVE spectroscopy

Paul J. Sanstead*, Paul Stevenson, Andrei Tokmakoff

Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute, University of Chicago, 929 E. 57th St. Chicago, IL 60637 *psanstead@uchicago.edu

The dehybridization of DNA oligonucleotides is studied with a combination of FTIR, 2D IR, and temperature jump t-HDVE spectroscopies. Nucleobase sequence is found to dictate the dissociation mechanism, with timescales of ~10 μ s assigned to strand dissociation and ~70 ns assigned to premelting events such as duplex fraying.

Recently developed coarse-grained models that represent DNA with a reduced number of interaction sites per nucleotide have simulated the hybridization mechanism of DNA in unmatched detail. These models predict rich hybridization dynamics including initial nucleation of a few key contacts followed by zippering of the remaining base pairs, shifted register slithering of one strand along another, and various internal displacement schemes depending on the nucleobase sequence.[1-2] At this time additional experimental insight is needed to directly investigate these or other potential mechanisms, but the required ps-µs temporal resolution along with the need for structural sensitivity poses a challenge.

We have developed an IR spectroscopy based strategy to investigate the dehybridization of DNA oligonucleotides. Through a combination of FTIR, 2D IR, and the aid of a lattice model extension of the nearest-neighbor model[3] we characterize the equilibrium ensemble of intact

base-pairs across the melting transition for a set of model oligonucleotides. We sequence find base directs the dehybridization. Some sequences, such as 5'-G(AT)₄C-3', dissociate in an essentially two-state manner while others, such as 5'-(AT)₂GC(AT)₂-3' demonstrate stable intermediates in which the terminal AT bases fray around a stable GC center. Temperature jump transient heterodyne dispersed vibrational echo (t-HDVE) experiments visualization of allow the DNA dehybridization in real-time. We observe 10-20dissociation μs timescales as well as 10's of ns premelting events such as fraving in those sequences demonstrating multistate dissociation (Fig 1).

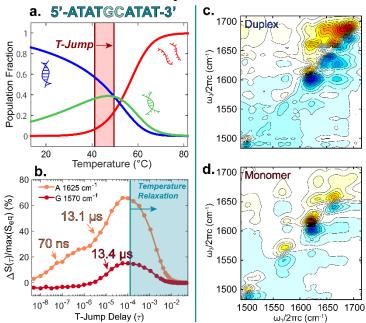


Fig 1. (a) Population profile demonstrating multistate dissociation (b) t-HDVE time traces showing initial fraying of the AT ends of the duplex. 2D IR spectra of DNA (c) duplex and (d) monomer.

^[1] Ouldridge, T. E. et al. Nucleic Acids Res. 2013, 41, 8886-8895.

^[2] Hinckley, D. M. et al. J. Chem. Phys. 2014, 141, 035102.

^[3] SantaLucia, J. A. Proc. Natl. Acad. Sci. USA. 1998, 95, 1460-1465.